Skip to main content
U.S. flag

An official website of the United States government

Here’s how you know

Dot gov

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

HTTPS

Secure .gov websites use HTTPS
A lock (LockA locked padlock) or https:// means you have safely connected to the .gov website. Share sensitive information only on official, secure websites.

  • Environmental Topics
  • Laws & Regulations
  • Report a Violation
  • About EPA
Contact Us

Grantee Research Project Results

Analysis of Halogenated Organic Particle-Scale Desorption via Column Studies and 13C Solid State NMR Spectroscopy

EPA Grant Number: R822626
Title: Analysis of Halogenated Organic Particle-Scale Desorption via Column Studies and 13C Solid State NMR Spectroscopy
Investigators: Reinhard, Martin
Institution: Stanford University
EPA Project Officer: Packard, Benjamin H
Project Period: September 1, 1995 through August 1, 1998 (Extended to August 31, 2000)
Project Amount: $177,916
RFA: Exploratory Research - Chemistry and Physics of Water (1995) RFA Text |  Recipients Lists
Research Category: Water , Land and Waste Management , Safer Chemicals

Description:

The objective of this project is to elucidate the mechanisms controlling the slow desorption of volatile organic chemicals from soils and sediments using column studies and 13C solid state nuclear magnetic resonance (NMR) spectroscopy.

Column studies involve measuring desorption isotherm and kinetic profiles for trichloroethylene on model and natural solids over a 45oC temperature range. NMR spectroscopy will be used to compare the resonance frequency of trichloroethylene, sorbed to model and natural solids, to the resonance frequency of pure phase and aqueous phase trichloroethylene. Model solids include a silica gel and zeolites of known composition and structure, and natural solids include soils and sediments. Results for the natural solids will be compared to results for the model solids to infer equilibrium and kinetic mechanisms. Isosteric heats of adsorption will be calculated from isotherms and activation energies will be calculated from slow kinetic profiles. In zeolites, adsorption in micropores controls equilibrium partitioning. In natural solids, isosteric heats of adsorption are expected to increase with decreasing concentration. At low concentrations, these values are expected to be on the order of those measured in zeolites, and adsorption in micropores is expected to control uptake. NMR spectroscopy is expected to show that sorbed trichloroethylene is in the pure phase at low concentrations. With respect to kinetics, mass transfer in zeolites is controlled by activated diffusion in micropores. Activation energies in natural solids are expected to be on the order of those in zeolites and activated diffusion in micropores is expected to control slow desorption.

These studies will allow contaminant transport models to be developed which mechanistically describe slow desorption and the effects of temperature on this process. These studies will also allow decision makers to gauge the viability of enhanced thermal recovery methods with respect to slow desorption.

Publications and Presentations:

Publications have been submitted on this project: View all 11 publications for this project

Journal Articles:

Journal Articles have been submitted on this project: View all 7 journal articles for this project

Supplemental Keywords:

groundwater, soil, sediments, environmental chemistry, VOC, TCE, sorption., Scientific Discipline, Toxics, Waste, Water, Ecosystem Protection/Environmental Exposure & Risk, Contaminated Sediments, Environmental Chemistry, Physics, HAPS, Chemistry, Fate & Transport, Engineering, Chemistry, & Physics, fate and transport, mass spectrometry, zeolites, contaminated sediment, spectroscopic studies, VOCs, particle scale desorption, Trichloroethylene, chemical composition, chemical detection techniques, mass transfer, spectroscopy, chemical kinetics, column studies

Progress and Final Reports:

  • 1996
  • 1997
  • 1998
  • 1999 Progress Report
  • Final Report
  • Top of Page

    The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Conclusions drawn by the principal investigators have not been reviewed by the Agency.

    Project Research Results

    • Final Report
    • 1999 Progress Report
    • 1998
    • 1997
    • 1996
    11 publications for this project
    7 journal articles for this project

    Site Navigation

    • Grantee Research Project Results Home
    • Grantee Research Project Results Basic Search
    • Grantee Research Project Results Advanced Search
    • Grantee Research Project Results Fielded Search
    • Publication search
    • EPA Regional Search

    Related Information

    • Search Help
    • About our data collection
    • Research Grants
    • P3: Student Design Competition
    • Research Fellowships
    • Small Business Innovation Research (SBIR)
    Contact Us to ask a question, provide feedback, or report a problem.
    Last updated April 28, 2023
    United States Environmental Protection Agency

    Discover.

    • Accessibility
    • Budget & Performance
    • Contracting
    • EPA www Web Snapshot
    • Grants
    • No FEAR Act Data
    • Plain Writing
    • Privacy
    • Privacy and Security Notice

    Connect.

    • Data.gov
    • Inspector General
    • Jobs
    • Newsroom
    • Open Government
    • Regulations.gov
    • Subscribe
    • USA.gov
    • White House

    Ask.

    • Contact EPA
    • EPA Disclaimers
    • Hotlines
    • FOIA Requests
    • Frequent Questions

    Follow.