Skip to main content
U.S. flag

An official website of the United States government

Here’s how you know

Dot gov

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

HTTPS

Secure .gov websites use HTTPS
A lock (LockA locked padlock) or https:// means you have safely connected to the .gov website. Share sensitive information only on official, secure websites.

  • Environmental Topics
  • Laws & Regulations
  • Report a Violation
  • About EPA
Contact Us

Grantee Research Project Results

Particle-Resolved Simulations for Quantifying Black Carbon Climate Impact and Model Uncertainty

EPA Grant Number: R835042
Title: Particle-Resolved Simulations for Quantifying Black Carbon Climate Impact and Model Uncertainty
Investigators: Riemer, Nicole , West, Matthew
Institution: University of Illinois Urbana-Champaign
EPA Project Officer: Chung, Serena
Project Period: June 1, 2011 through May 31, 2014 (Extended to May 31, 2015)
Project Amount: $449,902
RFA: Black Carbon's Role In Global To Local Scale Climate And Air Quality (2010) RFA Text |  Recipients Lists
Research Category: Climate Change , Air

Objective:

This project will use the new particle-resolved aerosol model PartMC-MOSAIC to address the following objectives: (1) Calculate key quantities for modeling black carbon effects in global and regional climate simulations (including the aging timescale, optical properties, and cloud condensation nuclei (CCN) number). (2) Quantify the uncertainty in these quantities in climate predictions resulting from inadequate representation of black carbon aerosol mixing state in existing models; and (3) Provide a testbed for the evaluation of proposed new approximate aerosol modeling algorithms.

Approach:

We will achieve this by constructing a suite of eight case studies for the Lagrangian trajectory-model PartMC-MOSAIC, representative of different geographical locations and environments. We will validate the PartMC-MOSAIC model in three of these scenarios against experimental data from recent field campaigns and compute key quantities in each case for black carbon impact, i.e. the aging timescale, single-scattering albedo, extinction effciency, asymmetry parameter, and CCN number, including the sensitivity of these with respect to the time of year and emission pattern. We will furthermore compute the error in these key quantities due to simplifying assumptions in traditional aerosol models and formulate numerical parameter estimates and usage recommendations for global and regional climate models.

Expected Results:

The results will help improve regional and global climate models resulting in a more accurate representation of black carbon in these models. We will gain a better understanding of the processes that lead to black carbon aging and the uncertainties and the errors due to simplifed mixing state representations in black carbon aging timescales, optical properties, and CCN properties. The project will also lead to a testbed of benchmark case studies for evaluating approximate aerosol models in the future.

Publications and Presentations:

Publications have been submitted on this project: View all 24 publications for this project

Journal Articles:

Journal Articles have been submitted on this project: View all 9 journal articles for this project

Supplemental Keywords:

black carbon aging, particle-resolved model, mixing state,

Progress and Final Reports:

  • 2011 Progress Report
  • 2012 Progress Report
  • 2013 Progress Report
  • Final Report
  • Top of Page

    The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Conclusions drawn by the principal investigators have not been reviewed by the Agency.

    Project Research Results

    • Final Report
    • 2013 Progress Report
    • 2012 Progress Report
    • 2011 Progress Report
    24 publications for this project
    9 journal articles for this project

    Site Navigation

    • Grantee Research Project Results Home
    • Grantee Research Project Results Basic Search
    • Grantee Research Project Results Advanced Search
    • Grantee Research Project Results Fielded Search
    • Publication search
    • EPA Regional Search

    Related Information

    • Search Help
    • About our data collection
    • Research Grants
    • P3: Student Design Competition
    • Research Fellowships
    • Small Business Innovation Research (SBIR)
    Contact Us to ask a question, provide feedback, or report a problem.
    Last updated April 28, 2023
    United States Environmental Protection Agency

    Discover.

    • Accessibility
    • Budget & Performance
    • Contracting
    • EPA www Web Snapshot
    • Grants
    • No FEAR Act Data
    • Plain Writing
    • Privacy
    • Privacy and Security Notice

    Connect.

    • Data.gov
    • Inspector General
    • Jobs
    • Newsroom
    • Open Government
    • Regulations.gov
    • Subscribe
    • USA.gov
    • White House

    Ask.

    • Contact EPA
    • EPA Disclaimers
    • Hotlines
    • FOIA Requests
    • Frequent Questions

    Follow.